Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell Death Dis ; 14(9): 644, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37775701

RESUMO

Ovarian cancer is the leading cause of death from gynecologic cancer worldwide. High-grade serous carcinoma (HGSC) is the most common and deadliest subtype of ovarian cancer. While the origin of ovarian tumors is still debated, it has been suggested that HGSC originates from cells in the fallopian tube epithelium (FTE), specifically the epithelial cells in the region of the tubal-peritoneal junction. Three main lesions, p53 signatures, STILs, and STICs, have been defined based on the immunohistochemistry (IHC) pattern of p53 and Ki67 markers and the architectural alterations of the cells, using the Sectioning and Extensively Examining the Fimbriated End Protocol. In this study, we performed an in-depth proteomic analysis of these pre-neoplastic epithelial lesions guided by mass spectrometry imaging and IHC. We evaluated specific markers related to each preneoplastic lesion. The study identified specific lesion markers, such as CAVIN1, Emilin2, and FBLN5. We also used SpiderMass technology to perform a lipidomic analysis and identified the specific presence of specific lipids signature including dietary Fatty acids precursors in lesions. Our study provides new insights into the molecular mechanisms underlying the progression of ovarian cancer and confirms the fimbria origin of HGSC.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias das Tubas Uterinas , Neoplasias Ovarianas , Feminino , Humanos , Tubas Uterinas , Neoplasias das Tubas Uterinas/genética , Neoplasias das Tubas Uterinas/química , Neoplasias das Tubas Uterinas/patologia , Proteína Supressora de Tumor p53 , Proteômica , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
2.
Anal Chem ; 93(43): 14383-14391, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34670081

RESUMO

Mass spectrometry imaging (MSI) has shown to bring invaluable information for biological and clinical applications. However, conventional MSI is generally performed ex vivo from tissue sections. Here, we developed a novel MS-based method for in vivo mass spectrometry imaging. By coupling the SpiderMass technology, that provides in vivo minimally invasive analysis-to a robotic arm of high accuracy, we demonstrate that images can be acquired from any surface by moving the laser probe above the surface. By equipping the robotic arm with a sensor, we are also able to both get the topography image of the sample surface and the molecular distribution, and then and plot back the molecular data, directly to the 3D topographical image without the need for image fusion. This is shown for the first time with the 3D topographic MS-based whole-body imaging of a mouse. Enabling fast in vivo MSI bridged to topography paves the way for surgical applications to excision margins.


Assuntos
Robótica , Animais , Imageamento Tridimensional , Camundongos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
Cell Rep Med ; 2(6): 100318, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34195683

RESUMO

Endometrial cancer (EC) is one of the most common gynecological cancers worldwide. Sentinel lymph node (SLN) status could be a major prognostic factor in evaluation of EC, but several prospective studies need to be performed. Here we report an in-depth proteomics analysis showing significant variations in the SLN protein landscape in EC. We show that SLNs are correlated to each tumor grade, which strengthens evidence of SLN involvement in EC. A few proteins are overexpressed specifically at each EC tumor grade and in the corresponding SLN. These proteins, which are significantly variable in both locations, should be considered potential markers of overall survival. Five major proteins for EC and SLN (PRSS3, PTX3, ASS1, ALDH2, and ANXA1) were identified in large-scale proteomics and validated by immunohistochemistry. This study improves stratification and diagnosis of individuals with EC as a result of proteomics profiling of SLNs.


Assuntos
Aldeído-Desidrogenase Mitocondrial/genética , Anexina A1/genética , Proteína C-Reativa/genética , Neoplasias do Endométrio/genética , Linfonodo Sentinela/metabolismo , Componente Amiloide P Sérico/genética , Tripsina/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Sequência de Aminoácidos , Anexina A1/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteína C-Reativa/metabolismo , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/mortalidade , Neoplasias do Endométrio/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Excisão de Linfonodo/métodos , Metástase Linfática , Gradação de Tumores , Prognóstico , Estudos Prospectivos , Proteômica/métodos , Linfonodo Sentinela/patologia , Linfonodo Sentinela/cirurgia , Biópsia de Linfonodo Sentinela/métodos , Componente Amiloide P Sérico/metabolismo , Transdução de Sinais , Análise de Sobrevida , Tripsina/metabolismo
4.
Trends Mol Med ; 27(6): 602-615, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33965341

RESUMO

In vivo cancer margin delineation during surgery remains a major challenge. Despite the availability of several image guidance techniques and intraoperative assessment, clear surgical margins and debulking efficiency remain scarce. For this reason, there is particular interest in developing rapid intraoperative tools with high sensitivity and specificity to help guide cancer surgery in vivo. Recently, several emerging technologies including intraoperative mass spectrometry have paved the way for molecular guidance in a clinical setting. We evaluate these techniques and assess their relevance for intraoperative surgical guidance and how they can transform the future of molecular cancer surgery, diagnostics, patient management and care.


Assuntos
Diagnóstico por Imagem/métodos , Cuidados Intraoperatórios , Margens de Excisão , Neoplasias/cirurgia , Cirurgia Assistida por Computador/métodos , Animais , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia
5.
Nat Commun ; 11(1): 5595, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154370

RESUMO

Rapid and accurate clinical diagnosis remains challenging. A component of diagnosis tool development is the design of effective classification models with Mass spectrometry (MS) data. Some Machine Learning approaches have been investigated but these models require time-consuming preprocessing steps to remove artifacts, making them unsuitable for rapid analysis. Convolutional Neural Networks (CNNs) have been found to perform well under such circumstances since they can learn representations from raw data. However, their effectiveness decreases when the number of available training samples is small, which is a common situation in medicine. In this work, we investigate transfer learning on 1D-CNNs, then we develop a cumulative learning method when transfer learning is not powerful enough. We propose to train the same model through several classification tasks over various small datasets to accumulate knowledge in the resulting representation. By using rat brain as the initial training dataset, a cumulative learning approach can have a classification accuracy exceeding 98% for 1D clinical MS-data. We show the use of cumulative learning using datasets generated in different biological contexts, on different organisms, and acquired by different instruments. Here we show a promising strategy for improving MS data classification accuracy when only small numbers of samples are available.


Assuntos
Aprendizado Profundo , Espectrometria de Massas/métodos , Redes Neurais de Computação , Animais , Bases de Dados Factuais , Diagnóstico por Computador , Humanos , Aprendizado de Máquina , Espectrometria de Massas/estatística & dados numéricos
6.
Nat Protoc ; 14(11): 3162-3182, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31597965

RESUMO

Rapid, sensitive, precise and accurate analysis of samples in their native in vivo environment is critical to better decipher physiological and physiopathological mechanisms. SpiderMass is an ambient mass spectrometry (MS) system designed for mobile in vivo and real-time surface analyses of biological tissues. The system uses a fibered laser, which is tuned to excite the most intense vibrational band of water, resulting in a process termed water-assisted laser desorption/ionization (WALDI). The water molecules act as an endogenous matrix in a matrix-assisted laser desorption ionization (MALDI)-like scenario, leading to the desorption/ionization of biomolecules (lipids, metabolites and proteins). The ejected material is transferred to the mass spectrometer through an atmospheric interface and a transfer line that is several meters long. Here, we formulate a three-stage procedure that includes (i) a laser system setup coupled to a Waters Q-TOF or Thermo Fisher Q Exactive mass analyzer, (ii) analysis of specimens and (iii) data processing. We also describe the optimal setup for the analysis of cell cultures, fresh-frozen tissue sections and in vivo experiments on skin. With proper optimization, the system can be used for a variety of different targets and applications. The entire procedure takes 1-2 d for complex samples.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Linhagem Celular , Cães , Desenho de Equipamento , Secções Congeladas , Humanos , Neoplasias/química , Ratos , Pele/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Água/química
7.
Cancer Cell ; 34(5): 840-851.e4, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30344004

RESUMO

Histopathological diagnosis of biopsy samples and margin assessment of surgical specimens are challenging aspects in sarcoma. Using dog patient tissues, we assessed the performance of a recently developed technology for fast ex vivo molecular lipid-based diagnosis of sarcomas. The instrument is based on mass spectrometry (MS) molecular analysis through a laser microprobe operating under ambient conditions using excitation of endogenous water molecules. Classification models based on cancer/normal/necrotic, tumor grade, and subtypes showed a minimum of 97.63% correct classification. Specific markers of normal, cancer, and necrotic regions were identified by tandem MS and validated by MS imaging. Real-time detection capabilities were demonstrated by ex vivo analysis with direct interrogation of classification models.


Assuntos
Detecção Precoce de Câncer/métodos , Lipídeos/análise , Técnicas de Diagnóstico Molecular/métodos , Sarcoma/diagnóstico , Sarcoma/patologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Cães , Gradação de Tumores/métodos
8.
Mol Cell Proteomics ; 17(8): 1637-1649, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29653959

RESUMO

Remote Infrared Matrix-Assisted Laser Desorption/Ionization (Remote IR-MALDI) system using tissue endogenous water as matrix was shown to enable in vivo real-time mass spectrometry analysis with minimal invasiveness. Initially the system was used to detect metabolites and lipids. Here, we demonstrate its capability to detect and analyze peptides and proteins. Very interestingly, the corresponding mass spectra show ESI-like charge state distribution, opening many applications for structural elucidation to be performed in real-time by Top-Down strategy. The charge states show no dependence toward laser wavelength or length of the transfer tube. Indeed, remote analysis can be performed 5 m away from the mass spectrometer without modification of spectra. On the contrary, addition of glycerol to water shift the charge state distributions toward even higher charge states. The desorption/ionization process is very soft, allowing to maintain protein conformation as in ESI. Observation of proteins and similar spectral features on tissue, when protein standards are deposited on raw tissue pieces, could potentially open the way to their direct analysis from biological samples. This also brings interesting features that could contribute to the understanding of IR MALDI ionization mechanism.


Assuntos
Pressão Atmosférica , Raios Infravermelhos , Proteínas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Concentração de Íons de Hidrogênio , Modelos Biológicos , Processamento de Sinais Assistido por Computador , Temperatura
9.
Sci Rep ; 6: 25919, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27189490

RESUMO

Here we describe a new instrument (SpiderMass) designed for in vivo and real-time analysis. In this instrument ion production is performed remotely from the MS instrument and the generated ions are transported in real-time to the MS analyzer. Ion production is promoted by Resonant Infrared Laser Ablation (RIR-LA) based on the highly effective excitation of O-H bonds in water molecules naturally present in most biological samples. The retrieved molecular patterns are specific to the cell phenotypes and benign versus cancer regions of patient biopsies can be easily differentiated. We also demonstrate by analysis of human skin that SpiderMass can be used under in vivo conditions with minimal damage and pain. Furthermore SpiderMass can also be used for real-time drug metabolism and pharmacokinetic (DMPK) analysis or food safety topics. SpiderMass is thus the first MS based system designed for in vivo real-time analysis under minimally invasive conditions.


Assuntos
Espectrometria de Massas/instrumentação , Procedimentos Cirúrgicos Minimamente Invasivos/instrumentação , Feminino , Humanos , Terapia a Laser/instrumentação , Masculino , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA